Click here to read what the information on this page means.
| Degrees | \(5\leqslant k\) where \(k\) is the polynomial subdegree |
| Polynomial subdegree | \(k\) |
| Polynomial superdegree | \(k\) |
| Reference cells | triangle |
| Finite dimensional space | \(\mathcal{P}_{k}\) ↓ Show set definitions ↓↑ Hide set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\) |
| DOFs | On each vertex: point evaluations, point evaluations of first derivatives, and point evaluations of second derivatives
On each edge: normal derivative integral moments with a degree \(k-5\) Lagrange space, and integral moments with a degree \(k-6\) Lagrange space
On each face: integral moments with a degree \(k-6\) Lagrange space |
| Number of DOFs | triangle: \(21+6(k-5)+(k-5)(k-4)/2\) |
| Mapping | see [2] |
| continuity | Function values and derivatives are continuous. |
| Categories | Scalar-valued elements |
This element is implemented in
FIAT and
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑| FIAT | FIAT.Argyris ↓ Show FIAT examples ↓↑ Hide FIAT examples ↑Before running this example, you must install FIAT: pip3 install git+https://github.com/firedrakeproject/fiat.git This element can then be created with the following lines of Python: import FIAT
# Create Argyris degree 5 element = FIAT.Argyris(FIAT.ufc_cell("triangle"), 5) This implementation is correct for all the examples below. |
| Symfem | "Argyris" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create Argyris degree 5 on a triangle element = symfem.create_element("triangle", "Argyris", 5) This implementation is used to compute the examples below and verify other implementations. |
- [1] Argyris, John H., Fried, Isaac, and Scharpf, Dieter W. The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal 72(692), 701–709, 1968. [DOI: 10.1017/S000192400008489X] [BibTeX]
- [2] Kirby, Robert C. A general approach to transforming finite elements, The SMAI journal of computational mathematics 4, 197–224, 2018. [DOI: 10.5802/smai-jcm.33] [BibTeX]
| Element added | 09 January 2021 |
| Element last updated | 20 November 2025 |