an encyclopedia of finite element definitions

Bernardi–Raugel

Click here to read what the information on this page means.

Abbreviated namesBR
Degrees\(1\leqslant k\leqslant d-1\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(d\)
Reference elementstriangle, tetrahedron
Polynomial set\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(5)}_{k}\) (triangle)
\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(6)}_{k}\) (tetrahedron, \(k=1\))
\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(7)}_{k}\) (tetrahedron, \(k=2\))
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations in coordinate directions
On each edge: (if \(k>1\)) point evaluations in coordinate directions at midpoints
On each facet: normal integral moments with an degree \(0\) Lagrange space
Number of DOFstriangle: \(9\)
tetrahedron: \(\begin{cases}16&k=1\\37&k=2\end{cases}\)
Mappingcontravariant Piola
continuityFunction values are continuous.
CategoriesVector-valued elements

Implementations

This element is implemented in FIAT and Symfem .↓ Show implementation detail ↓

Examples

triangle
degree 1

(click to view basis functions)
tetrahedron
degree 1

(click to view basis functions)
tetrahedron
degree 2

(click to view basis functions)

References

DefElement stats

Element added19 April 2021
Element last updated17 October 2024