an encyclopedia of finite element definitions

Degree 2 Raviart–Thomas on a hexahedron

◀ Back to Raviart–Thomas definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
and \(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 3 z^{2} - 4 z + 1\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
\(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \sqrt{3} \left(6 y z^{2} - 8 y z + 2 y - 3 z^{2} + 4 z - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
\(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \sqrt{3} \left(6 x z^{2} - 8 x z + 2 x - 3 z^{2} + 4 z - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
\(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 36 x y z^{2} - 48 x y z + 12 x y - 18 x z^{2} + 24 x z - 6 x - 18 y z^{2} + 24 y z - 6 y + 9 z^{2} - 12 z + 3\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
and \(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1.

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 3 y^{2} + 4 y - 1\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
\(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \sqrt{3} \left(- 6 y^{2} z + 3 y^{2} + 8 y z - 4 y - 2 z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
\(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \sqrt{3} \left(- 6 x y^{2} + 8 x y - 2 x + 3 y^{2} - 4 y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
\(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 36 x y^{2} z + 18 x y^{2} + 48 x y z - 24 x y - 12 x z + 6 x + 18 y^{2} z - 9 y^{2} - 24 y z + 12 y + 6 z - 3\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
and \(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2.

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 3 x^{2} - 4 x + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
\(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle \sqrt{3} \left(6 x^{2} z - 3 x^{2} - 8 x z + 4 x + 2 z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
\(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle \sqrt{3} \left(6 x^{2} y - 3 x^{2} - 8 x y + 4 x + 2 y - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
\(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 36 x^{2} y z - 18 x^{2} y - 18 x^{2} z + 9 x^{2} - 48 x y z + 24 x y + 24 x z - 12 x + 12 y z - 6 y - 6 z + 3\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
and \(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3.

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle x \left(3 x - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
\(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle \sqrt{3} x \left(6 x z - 3 x - 4 z + 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
\(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle \sqrt{3} x \left(6 x y - 3 x - 4 y + 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
\(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 3 x \left(12 x y z - 6 x y - 6 x z + 3 x - 8 y z + 4 y + 4 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{4}\)
where \(f_{4}\) is the 4th face;
and \(\hat{\boldsymbol{n}}_{4}\) is the normal to facet 4.

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(2 - 3 y\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{4}\)
where \(f_{4}\) is the 4th face;
\(\hat{\boldsymbol{n}}_{4}\) is the normal to facet 4;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \sqrt{3} y \left(- 6 y z + 3 y + 4 z - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{4}\)
where \(f_{4}\) is the 4th face;
\(\hat{\boldsymbol{n}}_{4}\) is the normal to facet 4;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \sqrt{3} y \left(- 6 x y + 4 x + 3 y - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{4}\)
where \(f_{4}\) is the 4th face;
\(\hat{\boldsymbol{n}}_{4}\) is the normal to facet 4;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 y \left(- 12 x y z + 6 x y + 8 x z - 4 x + 6 y z - 3 y - 4 z + 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{20}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{5}\)
where \(f_{5}\) is the 5th face;
and \(\hat{\boldsymbol{n}}_{5}\) is the normal to facet 5.

\(\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z \left(3 z - 2\right)\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{21}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{1} - 1\right))\hat{\boldsymbol{n}}_{5}\)
where \(f_{5}\) is the 5th face;
\(\hat{\boldsymbol{n}}_{5}\) is the normal to facet 5;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \sqrt{3} z \left(6 y z - 4 y - 3 z + 2\right)\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{22}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot(\sqrt{3} \left(2 s_{0} - 1\right))\hat{\boldsymbol{n}}_{5}\)
where \(f_{5}\) is the 5th face;
\(\hat{\boldsymbol{n}}_{5}\) is the normal to facet 5;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \sqrt{3} z \left(6 x z - 4 x - 3 z + 2\right)\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{23}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot(12 s_{0} s_{1} - 6 s_{0} - 6 s_{1} + 3)\hat{\boldsymbol{n}}_{5}\)
where \(f_{5}\) is the 5th face;
\(\hat{\boldsymbol{n}}_{5}\) is the normal to facet 5;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 3 z \left(12 x y z - 8 x y - 6 x z + 4 x - 6 y z + 4 y + 3 z - 2\right)\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{24}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{1} s_{2} - s_{1} - s_{2} + 1\\0\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle 24 x \left(- 9 x y z + 6 x y + 6 x z - 4 x + 9 y z - 6 y - 6 z + 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{25}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} s_{2} - s_{0} - s_{2} + 1\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 24 y \left(- 9 x y z + 6 x y + 9 x z - 6 x + 6 y z - 4 y - 6 z + 4\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{26}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{0} s_{1} - s_{0} - s_{1} + 1\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 24 z \left(- 9 x y z + 9 x y + 6 x z - 6 x + 6 y z - 6 y - 4 z + 4\right)\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{27}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} \left(1 - s_{2}\right)\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 24 y \left(9 x y z - 6 x y - 9 x z + 6 x - 3 y z + 2 y + 3 z - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{28}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{0} \left(1 - s_{1}\right)\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 24 z \left(9 x y z - 9 x y - 6 x z + 6 x - 3 y z + 3 y + 2 z - 2\right)\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{29}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{1} \left(1 - s_{2}\right)\\0\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 24 x \left(9 x y z - 6 x y - 3 x z + 2 x - 9 y z + 6 y + 3 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{30}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1} \left(1 - s_{0}\right)\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 24 z \left(9 x y z - 9 x y - 3 x z + 3 x - 6 y z + 6 y + 2 z - 2\right)\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{31}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{0} s_{1}\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 24 z \left(- 9 x y z + 9 x y + 3 x z - 3 x + 3 y z - 3 y - z + 1\right)\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{32}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{2} \left(1 - s_{1}\right)\\0\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle 24 x \left(9 x y z - 3 x y - 6 x z + 2 x - 9 y z + 3 y + 6 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{33}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{2} \left(1 - s_{0}\right)\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 24 y \left(9 x y z - 3 x y - 9 x z + 3 x - 6 y z + 2 y + 6 z - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{34}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} s_{2}\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 24 y \left(- 9 x y z + 3 x y + 9 x z - 3 x + 3 y z - y - 3 z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{35}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{1} s_{2}\\0\\0\end{array}\right)\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle 24 x \left(- 9 x y z + 3 x y + 3 x z - x + 9 y z - 3 y - 3 z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.