◀ Back to vector Q definition page
In this example:
- \(R\) is the reference quadrilateral. The following numbering of the subentities of the reference is used:
- \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2} y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2} y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y^{2}\end{array}\right)\)
- \(\mathcal{L}=\{l_0,...,l_{17}\}\)
- Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 4 x^{2} y^{2} - 6 x^{2} y + 2 x^{2} - 6 x y^{2} + 9 x y - 3 x + 2 y^{2} - 3 y + 1\\\displaystyle 0\end{array}\right)\)
This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x^{2} y^{2} - 6 x^{2} y + 2 x^{2} - 6 x y^{2} + 9 x y - 3 x + 2 y^{2} - 3 y + 1\end{array}\right)\)
This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x \left(4 x y^{2} - 6 x y + 2 x - 2 y^{2} + 3 y - 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(4 x y^{2} - 6 x y + 2 x - 2 y^{2} + 3 y - 1\right)\end{array}\right)\)
This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y \left(4 x^{2} y - 2 x^{2} - 6 x y + 3 x + 2 y - 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(4 x^{2} y - 2 x^{2} - 6 x y + 3 x + 2 y - 1\right)\end{array}\right)\)
This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle x y \left(4 x y - 2 x - 2 y + 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x y \left(4 x y - 2 x - 2 y + 1\right)\end{array}\right)\)
This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 4 x \left(- 2 x y^{2} + 3 x y - x + 2 y^{2} - 3 y + 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x \left(- 2 x y^{2} + 3 x y - x + 2 y^{2} - 3 y + 1\right)\end{array}\right)\)
This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 4 y \left(- 2 x^{2} y + 2 x^{2} + 3 x y - 3 x - y + 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(- 2 x^{2} y + 2 x^{2} + 3 x y - 3 x - y + 1\right)\end{array}\right)\)
This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 4 x y \left(- 2 x y + 2 x + y - 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y \left(- 2 x y + 2 x + y - 1\right)\end{array}\right)\)
This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 4 x y \left(- 2 x y + x + 2 y - 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y \left(- 2 x y + x + 2 y - 1\right)\end{array}\right)\)
This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 16 x y \left(x y - x - y + 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 16 x y \left(x y - x - y + 1\right)\end{array}\right)\)
This DOF is associated with face 0 of the reference element.