◀ Back to enriched vector Galerkin definition page
In this example:
- \(R\) is the reference triangle. The following numbering of the subentities of the reference is used:
- Basis functions:
\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 x^{2} + 4 x y - 3 x + 2 y^{2} - 3 y + 1\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x^{2} + 4 x y - 3 x + 2 y^{2} - 3 y + 1\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x \left(2 x - 1\right)\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(2 x - 1\right)\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y \left(2 y - 1\right)\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(2 y - 1\right)\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 4 x y\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 4 y \left(- x - y + 1\right)\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(- x - y + 1\right)\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 4 x \left(- x - y + 1\right)\\\displaystyle 0\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x \left(- x - y + 1\right)\end{array}\right)\)
\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle x - \frac{1}{3}\\\displaystyle y - \frac{1}{3}\end{array}\right)\)