an encyclopedia of finite element definitions

Hsieh–Clough–Tocher

Click here to read what the information on this page means.

Alternative namesClough–Tocher
De Rham complex families\(\mathrm{C}^1\mathrm{P}^3\mathrm{\Lambda}^0(\mathcal{R})\)
Abbreviated namesHCT, CT
Degrees\(3\leqslant k\)
Reference elementstriangle
DOFsOn each vertex: point evaluations, and point evaluations of first derivatives
On each edge: normal derivative integral moments with an degree \(k-3\) Lagrange space, and integral moments with an degree \(k-4\) Lagrange space
On each face: integral moments with an degree \(k-4\) Lagrange space
Number of DOFstriangle: \(12+6(k-3)+(k-3)(k-2)/2\)
Mappingidentity
continuityFunction values and derivatives are continuous.
CategoriesScalar-valued elements, Macro elements

Implementations

This element is implemented in FIAT and Symfem .↓ Show implementation detail ↓

Examples

triangle
degree 3

(click to view basis functions)

References

DefElement stats

Element added08 March 2021
Element last updated27 September 2024