an encyclopedia of finite element definitions
Click here to read what the information on this page means.
| Alternative names | \(Q_{k+1,k}\times Q_{k,k+1}\) |
| Abbreviated names | HZ |
| Degrees | \(1\leqslant k\) where \(k\) is the polynomial subdegree |
| Polynomial subdegree | \(k\) |
| Polynomial superdegree | \(2k+1\) |
| Lagrange subdegree | \(k\) |
| Lagrange superdegree | \(k+1\) |
| Reference cells | quadrilateral |
| Finite dimensional space | \(\mathcal{Z}^{(17)}_{k+1} \oplus \mathcal{Z}^{(18)}_{k+1}\) ↓ Show set definitions ↓ |
| DOFs | On each facet: normal integral moments with a degree \(k\) Lagrange space, and tangent integral moments with a degree \(k-1\) Lagrange space On the interior of the reference cell: integral moments with \(\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k\}, j\in\{0,1,...,k-1\}\right\}\cup\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k-1\}, j\in\{0,1,...,k\}\right\}\) |
| Number of DOFs | quadrilateral: \(2(k+1)(k+2)\) (A046092) |
| Mapping | contravariant Piola |
| continuity | Components normal to facets are continuous |
| Categories | Vector-valued elements, H(div) conforming elements |
| quadrilateral degree 1 | ![]() (click to view basis functions) |
| quadrilateral degree 2 | ![]() (click to view basis functions) |
| Element added | 09 December 2022 |
| Element last updated | 04 June 2025 |