an encyclopedia of finite element definitions

Huang–Zhang

Click here to read what the information on this page means.

Alternative names\(Q_{k+1,k}\times Q_{k,k+1}\)
Abbreviated namesHZ
Degrees\(2\leqslant k\)
where \(k\) is the Lagrange superdegree
Polynomial subdegree\(k-1\)
Polynomial superdegree\(2k-1\)
Lagrange subdegree\(k-1\)
Lagrange superdegree\(k\)
Reference elementsquadrilateral
Polynomial set\(\mathcal{Z}^{(13)}_{k} \oplus \mathcal{Z}^{(14)}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k-1\) Lagrange space, and tangent integral moments with an degree \(k-2\) Lagrange space
On the interior of the reference element: integral moments with \(\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k-1\}, j\in\{0,1,...,k-2\}\right\}\cup\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k-2\}, j\in\{0,1,...,k-1\}\right\}\)
Number of DOFsquadrilateral: \(2k(k+1)\) (A046092)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

quadrilateral
degree 2

(click to view basis functions)
quadrilateral
degree 3

(click to view basis functions)

References

DefElement stats

Element added09 December 2022
Element last updated27 September 2024