an encyclopedia of finite element definitions

Huang–Zhang

Click here to read what the information on this page means.

Alternative names\(Q_{k+1,k}\times Q_{k,k+1}\)
Abbreviated namesHZ
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(2k+1\)
Lagrange subdegree\(k\)
Lagrange superdegree\(k+1\)
Reference elementsquadrilateral
Polynomial set\(\mathcal{Z}^{(15)}_{k+1} \oplus \mathcal{Z}^{(16)}_{k+1}\)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with a degree \(k\) Lagrange space, and tangent integral moments with a degree \(k-1\) Lagrange space
On the interior of the reference element: integral moments with \(\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k\}, j\in\{0,1,...,k-1\}\right\}\cup\left\{\left(\begin{array}{c}x^iy^j\\0\end{array}\right)\middle|i\in\{0,1,...,k-1\}, j\in\{0,1,...,k\}\right\}\)
Number of DOFsquadrilateral: \(2(k+1)(k+2)\) (A046092)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)

References

DefElement stats

Element added09 December 2022
Element last updated31 March 2025