an encyclopedia of finite element definitions

Serendipity H(curl)

Click here to read what the information on this page means.

Alternative namesBrezzi–Douglas–Marini cubical H(curl) (quadrilateral), Arnold–Awanou H(curl) (hexahedron)
De Rham complex families\(\left[S_{1,k}^\square\right]_{1}\) or \(\mathcal{S}_{k}\Lambda^{1}(\square_d)\)
Abbreviated namesBDMce (quadrilateral), AAe (hexahedron)
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k + d - 1\)
Lagrange subdegreequadrilateral: \(\operatorname{floor}(k/d)\)
hexahedron: \(1\) (degree=2), \(\operatorname{floor}(k/d)\) (otherwise)
Lagrange superdegree\(k+1\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(26)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k}^d \oplus \mathcal{A}_{k-1} \oplus \mathcal{Z}^{(27)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each edge: tangent integral moments with an degree \(k\) dPc space
On each face: integral moments with an degree \(k-2\) vector dPc space
On each volume: integral moments with an degree \(k-4\) vector dPc space
Number of DOFsquadrilateral: \(k^2+3k+4\) (A014206)
hexahedron: \(\begin{cases}6(k^2+k+2)&k=1,2,3\\k(k+1)(k-1)/2 + 3k^2 + 12k + 9&k > 3\end{cases}\)
Mappingcovariant Piola
continuityComponents tangential to facets are continuous
CategoriesVector-valued elements, H(curl) conforming elements

Implementations

This element is implemented in Symfem and (legacy) UFL.↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)
hexahedron
degree 2

(click to view basis functions)

References

DefElement stats

Element added31 December 2020
Element last updated27 September 2024