an encyclopedia of finite element definitions

Serendipity H(div)

Click here to read what the information on this page means.

Alternative namesBrezzi–Douglas–Marini cubical H(div) (quadrilateral), Arnold–Awanou H(div) (hexahedron)
De Rham complex families\(\left[S_{1,k}^\square\right]_{d-1}\) or \(\mathcal{S}_{k}\Lambda^{d-1}(\square_d)\)
Abbreviated namesBDMcf (quadrilateral), AAf (hexahedron)
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k+1\)
Lagrange subdegree\(\operatorname{floor}(k/d)\)
Lagrange superdegree\(k+1\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(28)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(29)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k\) dPc space
On the interior of the reference element: integral moments with an degree \(k-2\) vector dPc space
Number of DOFsquadrilateral: \(k^2+3k+4\) (A014206)
hexahedron: \((k+1)(k^2+5k+12)/2\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Symfem and (legacy) UFL.↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)
hexahedron
degree 2

(click to view basis functions)

References

DefElement stats

Element added30 December 2020
Element last updated27 September 2024