an encyclopedia of finite element definitions

Tiniest tensor

Click here to read what the information on this page means.

Alternative namesTNT
De Rham complex families\(\left[S_{3,k}^\square\right]_{0}\)
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(\max(dk,d+k)\)
Lagrange subdegree\(k\)
Lagrange superdegree\(k+1\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{Q}_{k} \oplus \mathcal{Z}^{(30)}_{k}\) (quadrilateral)
\(\mathcal{Q}_{k} \oplus \mathcal{Z}^{(31)}_{k} \oplus \mathcal{Z}^{(32)}_{k} \oplus \mathcal{Z}^{(33)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations
On each edge: integral moments with \(\frac{\partial}{\partial x}f\) for each \(f\) in a degree \(k\) Lagrange space
On each face: integral moments with \(\Delta f\) for each \(f\) in a degree \(k\) Lagrange space such that the trace of \(f\) on the edges of the face is 0
On each volume: integral moments of gradient with \(\nabla f\) for each \(f\) in a degree \(k\) Lagrange space such that the trace of \(f\) on the faces of the volume is 0
Number of DOFsquadrilateral: \((k+1)^2 + 4\)
hexahedron: \((k+1)^3 + 12\)
Mappingidentity
continuityFunction values are continuous.
CategoriesScalar-valued elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
quadrilateral
degree 3

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)

References

DefElement stats

Element added24 October 2021
Element last updated27 September 2024