an encyclopedia of finite element definitions

Arnold–Winther

Click here to read what the information on this page means.

Alternative namesconforming Arnold–Winther
Degrees\(3\leqslant k\)
where \(k\) is the Polynomial superdegree
Polynomial subdegree\(k-1\)
Polynomial superdegree\(k\)
Reference elementstriangle
Polynomial set\(\mathcal{Z}^{(2)}_{k-1} \oplus \mathcal{Z}^{(3)}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations of three components
On each edge: integral moments of normal-normal and normal-tangent inner products with an degree \(k-2\) Lagrange space
On each face: integral moments of three components with an degree \(k-3\) Lagrange space, and integral moments of tensor dot product with \(\frac{\partial}{\partial(x, y)}x^2y^2(1-x-y)^2f\) for each degree \(k-4\) polynomial \(f\) in a degree \(k-4\) Lagrange space
Number of DOFstriangle: \((3k^2+5k+6)/2\)
Mappingdouble contravariant Piola
continuityInner products with normals to facets are continuous
CategoriesMatrix-valued elements

Implementations

This element is implemented in FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 3

(click to view basis functions)
triangle
degree 4

(click to view basis functions)

References

DefElement stats

Element added10 February 2021
Element last updated16 October 2024