an encyclopedia of finite element definitions

Arnold–Winther

Click here to read what the information on this page means.

Alternative namesconforming Arnold–Winther
Degrees\(2\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k+1\)
Reference elementstriangle
Polynomial set\(\mathcal{Z}^{(2)}_{k} \oplus \mathcal{Z}^{(3)}_{k+1}\)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations of three components
On each edge: integral moments of normal-normal and normal-tangent inner products with a degree \(k-1\) Lagrange space
On each face: integral moments of three components with a degree \(k-2\) Lagrange space, and integral moments of tensor dot product with \(\frac{\partial}{\partial(x, y)}x^2y^2(1-x-y)^2f\) for each degree \(k-3\) polynomial \(f\) in a degree \(k-3\) Lagrange space
Number of DOFstriangle: \((3k^2+11k+14)/2\)
Mappingdouble contravariant Piola
continuityInner products with normals to facets are continuous
CategoriesMatrix-valued elements

Implementations

This element is implemented in FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 2

(click to view basis functions)
triangle
degree 3

(click to view basis functions)

References

DefElement stats

Element added10 February 2021
Element last updated31 March 2025