an encyclopedia of finite element definitions

Brezzi–Douglas–Durán–Fortin

Click here to read what the information on this page means.

Abbreviated namesBDDF
Degrees\(1\leqslant k\)
where \(k\) is the Lagrange superdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k+1\)
Lagrange subdegree\(\operatorname{floor}(k/3)\)
Lagrange superdegree\(k\)
Reference elementshexahedron
Polynomial set\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(8)}_{k} \oplus \mathcal{Z}^{(9)}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k\) Lagrange space
On the interior of the reference element: integral moments with an degree \(k-2\) vector Lagrange space
Number of DOFshexahedron: \((k+1)(k^2+5k+12)/2\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

hexahedron
degree 1

(click to view basis functions)
hexahedron
degree 2

(click to view basis functions)

References

DefElement stats

Element added31 January 2021
Element last updated27 September 2024