an encyclopedia of finite element definitions

Crouzeix–Raviart

Click here to read what the information on this page means.

Alternative namesnon-conforming Crouzeix–Raviart
Abbreviated namesCR
Degrees\(k=1\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegreetriangle: \(k\)
tetrahedron: \(k\)
quadrilateral: \(k+1\)
hexahedron: \(k+1\)
Lagrange subdegreetriangle: \(k\)
tetrahedron: \(k\)
quadrilateral: \(k-1\)
hexahedron: \(k-1\)
Lagrange superdegreetriangle: \(k\)
tetrahedron: \(k\)
quadrilateral: \(k+1\)
hexahedron: \(k+1\)
Reference cellstriangle, tetrahedron, quadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k}\) (triangle, tetrahedron)
\(\mathcal{P}_{k} \oplus \mathcal{Z}^{(13)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k} \oplus \mathcal{Z}^{(14)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each facet: point evaluation at midpoint
Number of DOFstriangle: \(3\)
tetrahedron: \(4\)
quadrilateral: \(4\)
hexahedron: \(6\)
Mappingidentity
continuityDiscontinuous.
CategoriesScalar-valued elements

Implementations

This element is implemented in Basix , Basix.UFL , FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 1

(click to view basis functions)
tetrahedron
degree 1

(click to view basis functions)
quadrilateral
degree 1

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)

References

DefElement stats

Element added01 January 2021
Element last updated20 June 2025