an encyclopedia of finite element definitions

Degree 1 Crouzeix–Raviart on a hexahedron

◀ Back to Crouzeix–Raviart definition page
In this example:
\(\displaystyle l_{0}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{2},0)\)

\(\displaystyle \phi_{0} = - \frac{2 x^{2}}{3} + \frac{2 x}{3} - \frac{2 y^{2}}{3} + \frac{2 y}{3} + \frac{4 z^{2}}{3} - \frac{7 z}{3} + \frac{2}{3}\)

This DOF is associated with face 0 of the reference cell.
\(\displaystyle l_{1}:v\mapsto v(\tfrac{1}{2},0,\tfrac{1}{2})\)

\(\displaystyle \phi_{1} = - \frac{2 x^{2}}{3} + \frac{2 x}{3} + \frac{4 y^{2}}{3} - \frac{7 y}{3} - \frac{2 z^{2}}{3} + \frac{2 z}{3} + \frac{2}{3}\)

This DOF is associated with face 1 of the reference cell.
\(\displaystyle l_{2}:v\mapsto v(0,\tfrac{1}{2},\tfrac{1}{2})\)

\(\displaystyle \phi_{2} = \frac{4 x^{2}}{3} - \frac{7 x}{3} - \frac{2 y^{2}}{3} + \frac{2 y}{3} - \frac{2 z^{2}}{3} + \frac{2 z}{3} + \frac{2}{3}\)

This DOF is associated with face 2 of the reference cell.
\(\displaystyle l_{3}:v\mapsto v(1,\tfrac{1}{2},\tfrac{1}{2})\)

\(\displaystyle \phi_{3} = \frac{4 x^{2}}{3} - \frac{x}{3} - \frac{2 y^{2}}{3} + \frac{2 y}{3} - \frac{2 z^{2}}{3} + \frac{2 z}{3} - \frac{1}{3}\)

This DOF is associated with face 3 of the reference cell.
\(\displaystyle l_{4}:v\mapsto v(\tfrac{1}{2},1,\tfrac{1}{2})\)

\(\displaystyle \phi_{4} = - \frac{2 x^{2}}{3} + \frac{2 x}{3} + \frac{4 y^{2}}{3} - \frac{y}{3} - \frac{2 z^{2}}{3} + \frac{2 z}{3} - \frac{1}{3}\)

This DOF is associated with face 4 of the reference cell.
\(\displaystyle l_{5}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{2},1)\)

\(\displaystyle \phi_{5} = - \frac{2 x^{2}}{3} + \frac{2 x}{3} - \frac{2 y^{2}}{3} + \frac{2 y}{3} + \frac{4 z^{2}}{3} - \frac{z}{3} - \frac{1}{3}\)

This DOF is associated with face 5 of the reference cell.