◀ Back to conforming Crouzeix–Raviart definition page
In this example:
- \(R\) is the reference triangle. The following numbering of the subentities of the reference is used:
- \(\mathcal{V}\) is spanned by: \(1\), \(x\), \(x^{2}\), \(y\), \(x y\), \(y^{2}\), \(x y \left(x + y\right)\)
- \(\mathcal{L}=\{l_0,...,l_{6}\}\)
- Functionals and basis functions:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)
\(\displaystyle \phi_{0} = - 3 x^{2} y + 2 x^{2} - 3 x y^{2} + 7 x y - 3 x + 2 y^{2} - 3 y + 1\)
This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)
\(\displaystyle \phi_{1} = x \left(- 3 x y + 2 x - 3 y^{2} + 3 y - 1\right)\)
This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)
\(\displaystyle \phi_{2} = y \left(- 3 x^{2} - 3 x y + 3 x + 2 y - 1\right)\)
This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{2})\)
\(\displaystyle \phi_{3} = 4 x y \left(3 x + 3 y - 2\right)\)
This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{4}:v\mapsto v(0,\tfrac{1}{2})\)
\(\displaystyle \phi_{4} = 4 y \left(3 x^{2} + 3 x y - 4 x - y + 1\right)\)
This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{5}:v\mapsto v(\tfrac{1}{2},0)\)
\(\displaystyle \phi_{5} = 4 x \left(3 x y - x + 3 y^{2} - 4 y + 1\right)\)
This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:v\mapsto v(\tfrac{1}{3},\tfrac{1}{3})\)
\(\displaystyle \phi_{6} = 27 x y \left(- x - y + 1\right)\)
This DOF is associated with face 0 of the reference element.