Click here to read what the information on this page means.
Abbreviated names | conforming CR |
Degrees | \(1\leqslant k\) where \(k\) is the Polynomial subdegree |
Polynomial subdegree | \(k\) |
Polynomial superdegree | \(k+1\) |
Reference elements | triangle |
Polynomial set | \(\mathcal{P}_{k} \oplus \mathcal{Z}^{(12)}_{k}\) ↓ Show polynomial set definitions ↓↑ Hide polynomial set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\)
\(\mathcal{Z}^{(12)}_k=\left\{x^iy^{k-i}(x+y)\middle|i=1,...,k-1\right\}\) |
DOFs | On each vertex: points evaluation
On each edge: point evaluations
On each face: point evaluations |
Number of DOFs | triangle: \(k(k+5)/2\) |
Mapping | identity |
continuity | Discontinuous. |
Categories | Scalar-valued elements |
This element is implemented in
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑Symfem | "conforming Crouzeix-Raviart" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create conforming Crouzeix-Raviart degree 1 on a triangle element = symfem.create_element("triangle", "conforming Crouzeix-Raviart", 1)
# Create conforming Crouzeix-Raviart degree 2 on a triangle element = symfem.create_element("triangle", "conforming Crouzeix-Raviart", 2)
# Create conforming Crouzeix-Raviart degree 3 on a triangle element = symfem.create_element("triangle", "conforming Crouzeix-Raviart", 3)
# Create conforming Crouzeix-Raviart degree 4 on a triangle element = symfem.create_element("triangle", "conforming Crouzeix-Raviart", 4)
# Create conforming Crouzeix-Raviart degree 5 on a triangle element = symfem.create_element("triangle", "conforming Crouzeix-Raviart", 5) This implementation is used to compute the examples below and verify other implementations. |
- Crouzeix, Michel and Raviart, Pierre-Arnaud. Conforming and nonconforming finite element methods for solving the stationary Stokes equations, Revue Française d'Automatique, Informatique et Recherche Opérationnelle 3, 33–75, 1973. [DOI: 10.1051/m2an/197307R300331] [BibTeX]
Element added | 04 July 2021 |
Element last updated | 27 September 2024 |