an encyclopedia of finite element definitions

Degree 1 vector Lagrange on a triangle

◀ Back to vector Lagrange definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - x - y + 1\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - x - y + 1\end{array}\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)\)

This DOF is associated with vertex 2 of the reference element.