Click here to read what the information on this page means.
Degrees | \(0\leqslant k\) where \(k\) is the Polynomial subdegree |
Polynomial subdegree | \(k\) |
Polynomial superdegree | \(k\) |
Reference elements | triangle |
Polynomial set | \(\mathcal{P}_{k}^{d\times d}\) ↓ Show polynomial set definitions ↓↑ Hide polynomial set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\) |
DOFs | On each facet: integral moments of inner products of tangent(s) and normal to facet with a degree \(k\) Lagrange space
On the interior of the reference element: integral moments of matrix trace with a degree \(k\) Lagrange space, and integral moments of tensor products against zero normal-tangent trace bubble with a degree \(k-1\) Lagrange space |
Number of DOFs | triangle: \(2(k+1)(k+2)\) (A046092) tetrahedron: \(3(k+1)(k+2)(k+3)/2\) |
Mapping | covariant-contravariant Piola |
continuity | Tangent-normal inner products on facets are continuous |
Categories | Matrix-valued elements |
This element is implemented in
FIAT and
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑FIAT | FIAT.GopalakrishnanLedererSchoberlFirstKind ↓ Show FIAT examples ↓↑ Hide FIAT examples ↑Before running this example, you must install FIAT: pip3 install git+https://github.com/firedrakeproject/fiat.git This element can then be created with the following lines of Python: import FIAT
# Create Gopalakrishnan-Lederer-Schoberl degree 0 element = FIAT.GopalakrishnanLedererSchoberlFirstKind(FIAT.ufc_cell("triangle"), 1)
# Create Gopalakrishnan-Lederer-Schoberl degree 1 element = FIAT.GopalakrishnanLedererSchoberlFirstKind(FIAT.ufc_cell("triangle"), 2)
# Create Gopalakrishnan-Lederer-Schoberl degree 2 element = FIAT.GopalakrishnanLedererSchoberlFirstKind(FIAT.ufc_cell("triangle"), 3)
# Create Gopalakrishnan-Lederer-Schoberl degree 0 element = FIAT.GopalakrishnanLedererSchoberlFirstKind(FIAT.ufc_cell("tetrahedron"), 1)
# Create Gopalakrishnan-Lederer-Schoberl degree 1 element = FIAT.GopalakrishnanLedererSchoberlFirstKind(FIAT.ufc_cell("tetrahedron"), 2) |
Symfem | "Gopalakrishnan-Lederer-Schoberl" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create Gopalakrishnan-Lederer-Schoberl degree 0 on a triangle element = symfem.create_element("triangle", "Gopalakrishnan-Lederer-Schoberl", 0)
# Create Gopalakrishnan-Lederer-Schoberl degree 1 on a triangle element = symfem.create_element("triangle", "Gopalakrishnan-Lederer-Schoberl", 1)
# Create Gopalakrishnan-Lederer-Schoberl degree 2 on a triangle element = symfem.create_element("triangle", "Gopalakrishnan-Lederer-Schoberl", 2)
# Create Gopalakrishnan-Lederer-Schoberl degree 0 on a tetrahedron element = symfem.create_element("tetrahedron", "Gopalakrishnan-Lederer-Schoberl", 0)
# Create Gopalakrishnan-Lederer-Schoberl degree 1 on a tetrahedron element = symfem.create_element("tetrahedron", "Gopalakrishnan-Lederer-Schoberl", 1) This implementation is used to compute the examples below and verify other implementations. |
- Gopalakrishnan, Jay, Lederer, Philip L., and Schöberl, Joachim. A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry, SIAM Journal on Numerical Analysis 58(1), 706–732, 2020. [DOI: 10.1137/19M1248960] [BibTeX]
Element added | 08 April 2025 |
Element last updated | 10 April 2025 |