an encyclopedia of finite element definitions

Mardal–Tai–Winther

Click here to read what the information on this page means.

Abbreviated namesMTW
Degrees\(k=3\)
Polynomial subdegree\(1\)
Polynomial superdegree\(k+d-2\)
Reference elementstriangle, tetrahedron
Polynomial set\(\mathcal{Z}^{(17)}_{k}\) (triangle)
\(\mathcal{P}_{k}^d \oplus \mathcal{Z}^{(18)}_{k}\) (tetrahedron)
↓ Show polynomial set definitions ↓
DOFsOn each facet (triangle): normal integral moments with an degree \(1\) Lagrange space, and tangent integral moments with an degree \(0\) Lagrange space

On each facet (tetrahedron): normal integral moments with an degree \(1\) Lagrange space, and integral moments with an degree \(1\) Nédélec (first kind) space
Number of DOFstriangle: \(9\)
tetrahedron: \(24\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 3

(click to view basis functions)
tetrahedron
degree 3

(click to view basis functions)

References

DefElement stats

Element added09 January 2021
Element last updated27 September 2024