Click here to read what the information on this page means.
Degrees | \(k=1\) where \(k\) is the Polynomial subdegree |
Polynomial subdegree | \(k\) |
Polynomial superdegree | \(k+1\) |
Lagrange subdegree | \(k-1\) |
Lagrange superdegree | \(k+1\) |
Reference elements | quadrilateral, hexahedron |
Polynomial set | \(\mathcal{P}_{k} \oplus \mathcal{Z}^{(22)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k} \oplus \mathcal{Z}^{(23)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓↑ Hide polynomial set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\)
\(\mathcal{Z}^{(22)}_k=\operatorname{span}\left\{(x_1+x_2)(x_1-x_2)\right\}\)
\(\mathcal{Z}^{(23)}_k=\operatorname{span}\left\{(x_1+x_2)(x_1-x_2),(x_2+x_3)(x_2-x_3))\right\}\) |
DOFs | On each facet: point evaluation at midpoint |
Number of DOFs | quadrilateral: \(4\) hexahedron: \(6\) |
Mapping | identity |
continuity | Discontinuous. |
Categories | Scalar-valued elements |
This element is implemented in
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑Symfem | "Rannacher-Turek" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create Rannacher-Turek degree 1 on a quadrilateral element = symfem.create_element("quadrilateral", "Rannacher-Turek", 1) This implementation is used to compute the examples below and verify other implementations. |
- Rannacher, Rolf and Turek, Stefan. Simple nonconforming quadrilateral Stokes element, Numerical methods for partial differential equations 8, 97–111, 1992. [DOI: 10.1002/num.1690080202] [BibTeX]
Element added | 06 May 2022 |
Element last updated | 27 September 2024 |