an encyclopedia of finite element definitions

Serendipity

Click here to read what the information on this page means.

De Rham complex families\(\left[S_{1,k}^\square\right]_{0}\) or \(\mathcal{S}_{k}\Lambda^{0}(\square_d)\), \(\left[S_{2,k-d}^\square\right]_{0}\) or \(\mathcal{S}^-_{k-d}\Lambda^{0}(\square_d)\)
Abbreviated namesS
Degrees\(1\leqslant k\)
where \(k\) is the Lagrange superdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k + d - 1\)
Lagrange subdegree\(\max(1,\operatorname{floor}(k/d))\)
Lagrange superdegree\(k\)
Reference elementsinterval, quadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k} \oplus \mathcal{X}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations
On each edge: integral moments with an degree \(k-2\) dPc space
On each face: integral moments with an degree \(k-4\) dPc space
On each volume: integral moments with an degree \(k-6\) dPc space
Number of DOFsinterval: \(k+1\) (A000027)
quadrilateral: \(\begin{cases}4&k=1\\k(k+3)/2+3&k>1\end{cases}\) (A340266)
hexahedron: \(\begin{cases}12k-4&k=1,2,3\\3k^2-3k+14&k=4,5\\k(k-1)(k+1)/6+k^2+5k+4&k>6\end{cases}\)
Mappingidentity
continuityFunction values are continuous.
CategoriesScalar-valued elements

Implementations

This element is implemented in Basix , Basix.UFL , FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

interval
degree 1

(click to view basis functions)
interval
degree 2

(click to view basis functions)
interval
degree 3

(click to view basis functions)
quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
quadrilateral
degree 3

(click to view basis functions)

References

DefElement stats

Element added02 January 2021
Element last updated27 September 2024