Click here to read what the information on this page means.
| Degrees | interval: \(k=3\)
triangle: \(k=3\)
tetrahedron: \(k=4\) |
| Polynomial subdegree | interval: \(k\) triangle: \(k\) tetrahedron: \(k\) |
| Polynomial superdegree | \(k\) |
| Reference cells | interval, triangle, tetrahedron |
| Finite dimensional space | \(\mathcal{P}_{k}\) (interval)
\(\mathcal{P}_{k} \oplus \mathcal{Z}^{(52)}_{1}\) (triangle)
\(\mathcal{P}_{k} \oplus \mathcal{Z}^{(53)}_{1}\) (tetrahedron)
↓ Show set definitions ↓↑ Hide set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\)
\(\mathcal{Z}^{(52)}_k=\left\{xy(1-x-y)p\middle|p\in\mathcal{P}_{k}\setminus\mathcal{P}_{0}\right\}\)
\(\mathcal{Z}^{(53)}_k=\left\{xyz(1-x-y-z)p\middle|p\in\mathcal{P}_{k}\setminus\mathcal{P}_{0}\right\}\) |
| DOFs | On each vertex: point evaluations
On each edge: integrals of normal derivatives
On each face: integrals of normal derivatives
On each volume: integrals of normal derivatives |
| Number of DOFs | interval: \(4\) triangle: \(12\) tetrahedron: \(38\) |
| Mapping | see [2] |
| continuity | Function values are continuous. |
| Notes | This is a higher degree version of the Morley–Wang–Xu element. |
| Categories | Scalar-valued elements |
This element is implemented in
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑| Symfem | "Wu-Xu" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create Wu-Xu degree 3 on a interval element = symfem.create_element("interval", "Wu-Xu", 3)
# Create Wu-Xu degree 3 on a triangle element = symfem.create_element("triangle", "Wu-Xu", 3)
# Create Wu-Xu degree 4 on a tetrahedron element = symfem.create_element("tetrahedron", "Wu-Xu", 4) This implementation is used to compute the examples below and verify other implementations. |
- [1] Wu, Shuonan and Xu, Jinchao. Nonconforming finite element spaces for 2mth order partial differential equations on Rn simplical grids when m=n+1, Mathematics of computation 88, 531–551, 2019. [DOI: 10.1090/mcom/3361] [BibTeX]
- [2] Kirby, Robert C. A general approach to transforming finite elements, The SMAI journal of computational mathematics 4, 197–224, 2018. [DOI: 10.5802/smai-jcm.33] [BibTeX]
| Element added | 08 June 2021 |
| Element last updated | 20 November 2025 |