an encyclopedia of finite element definitions

Morley–Wang–Xu

Click here to read what the information on this page means.

Degreesinterval: \(k=1\)
triangle: \(1\leqslant k\leqslant 2\)
tetrahedron: \(1\leqslant k\leqslant 3\)
where \(k\) is the Polynomial superdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k\)
Reference elementsinterval, triangle, tetrahedron
Polynomial set\(\mathcal{P}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations
On each edge: integrals of normal derivatives
On each face: integrals of normal derivatives
On each volume: integrals of normal derivatives
Number of DOFsinterval: \(k+1\) (A000027)
triangle: \((k+1)(k+2)/2\) (A000217)
tetrahedron: \((k+1)(k+2)(k+3)/6\) (A000292)
Mappingidentity
NotesA Morley-Wang-Xu element of degree \(k\) and reference element dimension \(d\) only includes degrees of freedom on subentities of dimensions \((d - i), 1 \leqslant i \leqslant k \).
CategoriesScalar-valued elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

interval
degree 1

(click to view basis functions)
triangle
degree 1

(click to view basis functions)
triangle
degree 2

(click to view basis functions)
tetrahedron
degree 1

(click to view basis functions)
tetrahedron
degree 2

(click to view basis functions)
tetrahedron
degree 3

(click to view basis functions)

References

DefElement stats

Element added08 June 2021
Element last updated24 October 2024