Click here to read what the information on this page means.
| Abbreviated names | ABF |
| Degrees | \(0\leqslant k\) where \(k\) is the polynomial subdegree |
| Polynomial subdegree | \(k\) |
| Polynomial superdegree | \(2k+2\) |
| Lagrange subdegree | \(k\) |
| Lagrange superdegree | \(k+2\) |
| Reference cells | quadrilateral |
| Finite dimensional space | \(\mathcal{Z}^{(0)}_{k} \oplus \mathcal{Z}^{(1)}_{k}\) ↓ Show set definitions ↓↑ Hide set definitions ↑\(\mathcal{Z}^{(0)}_k=\left\{\left(\begin{array}{c}x^py^q\\0\end{array}\right)\middle|p\leqslant k+2,q\leqslant k\right\}\)
\(\mathcal{Z}^{(1)}_k=\left\{\left(\begin{array}{c}0\\x^py^q\end{array}\right)\middle|p\leqslant k,q\leqslant k+2\right\}\) |
| DOFs | On each edge: normal integral moments with a degree \(k\) Lagrange space
On each face: integral moments with a degree \(k\) Nédélec (first kind) space, integral moments of the divergence with \(x^{k+1}y^q\) for q=0,1,...,k, and integral moments of the divergence with \(x^qy^{k+1}\) for q=0,1,...,k |
| Mapping | see [2] |
| continuity | Components normal to facets are continuous |
| Categories | Vector-valued elements, H(div) conforming elements |
This element is implemented in
Symfem .
↓ Show implementation detail ↓↑ Hide implementation detail ↑| Symfem | "ABF" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before running this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create Arnold-Boffi-Falk degree 0 on a quadrilateral element = symfem.create_element("quadrilateral", "ABF", 0)
# Create Arnold-Boffi-Falk degree 1 on a quadrilateral element = symfem.create_element("quadrilateral", "ABF", 1)
# Create Arnold-Boffi-Falk degree 2 on a quadrilateral element = symfem.create_element("quadrilateral", "ABF", 2) This implementation is used to compute the examples below and verify other implementations. |
- [1] Arnold, Douglas N., Boffi, Daniele, and Falk, Richard S. Quadrilateral H(div) finite elements, SIAM Journal on Numerical Analysis 42(5), 2429–2451, 2005. [DOI: 10.1137/S0036142903431924] [BibTeX]
- [2] Kirby, Robert C. A general approach to transforming finite elements, The SMAI journal of computational mathematics 4, 197–224, 2018. [DOI: 10.5802/smai-jcm.33] [BibTeX]
| Element added | 01 December 2021 |
| Element last updated | 20 November 2025 |