an encyclopedia of finite element definitions

Brezzi–Douglas–Fortin–Marini

Click here to read what the information on this page means.

Abbreviated namesBDFM
Degrees\(1\leqslant k\)
where \(k\) is the Lagrange superdegree
Polynomial subdegree\(k-1\)
Polynomial superdegree\(k\)
Lagrange subdegreetriangle: \(k-1\)
tetrahedron: \(k-1\)
quadrilateral: \(\operatorname{floor}(k/d)\)
hexahedron: \(\operatorname{floor}(k/d)\)
Lagrange superdegree\(k\)
Reference elementstriangle, quadrilateral, tetrahedron, hexahedron
Polynomial set\(\mathcal{Z}^{(10)}_{k}\)
↓ Show polynomial set definitions ↓
DOFsOn each facet (triangle): normal integral moments with an degree \(k-1\) Lagrange space
On each facet (tetrahedron): normal integral moments with an degree \(k-1\) Lagrange space
On each facet (quadrilateral): normal integral moments with an degree \(k-1\) dPc space
On each facet (hexahedron): normal integral moments with an degree \(k-1\) dPc space
On the interior of the reference element (triangle): integral moments with an degree \(k-1\) Nédélec (first kind) space
On the interior of the reference element (tetrahedron): integral moments with an degree \(k-1\) Nédélec (first kind) space
On the interior of the reference element (quadrilateral): integral moments with an degree \(k-2\) vector dPc space
On the interior of the reference element (hexahedron): integral moments with an degree \(k-2\) vector dPc space
Number of DOFstriangle: \(k^2+3k-1\)
quadrilateral: \(k(k+3)\) (A028552)
tetrahedron: \((k+1)(k^2+5k-2)/2\)
hexahedron: \(k(k+1)(k+5)/2\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 1

(click to view basis functions)
triangle
degree 2

(click to view basis functions)
quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
tetrahedron
degree 2

(click to view basis functions)
hexahedron
degree 2

(click to view basis functions)

References

DefElement stats

Element added30 January 2021
Element last updated16 October 2024