an encyclopedia of finite element definitions

Brezzi–Douglas–Marini

Click here to read what the information on this page means.

De Rham complex families\(\left[S_{1,k}^\unicode{0x25FA}\right]_{d-1}\) or \(\mathcal{P}_{k}\Lambda^{d-1}(\Delta_d)\)
Abbreviated namesBDM
VariantsLegendre: Integral moments are taken against orthonormal polynomials
Lagrange: Integral moments are taken against Lagrange basis functions
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial superdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(k\)
Reference elementstriangle, tetrahedron
Polynomial set\(\mathcal{P}_{k}^d\)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k\) Lagrange space
On the interior of the reference element: integral moments with an degree \(k-1\) Nédélec (first kind) space
Number of DOFstriangle: \((k+1)(k+2)\) (A002378)
tetrahedron: \((k+1)(k+2)(k+3)/2\) (A027480)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Basix , Basix.UFL , FIAT , Symfem , and (legacy) UFL.↓ Show implementation detail ↓

Examples

triangle
degree 1
Lagrange variant

(click to view basis functions)
triangle
degree 2
Lagrange variant

(click to view basis functions)
tetrahedron
degree 1
Lagrange variant

(click to view basis functions)
tetrahedron
degree 2
Lagrange variant

(click to view basis functions)
triangle
degree 1
Legendre variant

(click to view basis functions)
triangle
degree 2
Legendre variant

(click to view basis functions)
tetrahedron
degree 1
Legendre variant

(click to view basis functions)
tetrahedron
degree 2
Legendre variant

(click to view basis functions)

References

DefElement stats

Element added30 December 2020
Element last updated27 September 2024