◀ Back to Brezzi–Douglas–Marini definition page
In this example:
- \(R\) is the reference tetrahedron. The following numbering of the subentities of the reference is used:
- \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)\)
- \(\mathcal{L}=\{l_0,...,l_{11}\}\)
- Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(\sqrt{2})\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
and \(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0.
\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle \sqrt{2} x\\\displaystyle \sqrt{2} y\\\displaystyle \sqrt{2} z\end{array}\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(6 s_{1} - 2)\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
\(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{0}\).
\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 2 x\\\displaystyle - 2 y\\\displaystyle 4 z\end{array}\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(2 \sqrt{3} \left(2 s_{0} + s_{1} - 1\right))\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
\(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{0}\).
\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - 2 \sqrt{3} x\\\displaystyle 2 \sqrt{3} y\\\displaystyle 0\end{array}\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(\sqrt{2})\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
and \(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1.
\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle \sqrt{2} \left(1 - x\right)\\\displaystyle - \sqrt{2} y\\\displaystyle - \sqrt{2} z\end{array}\right)\)
This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(6 s_{1} - 2)\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
\(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{1}\).
\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 2 x + 6 z - 2\\\displaystyle 2 y\\\displaystyle - 4 z\end{array}\right)\)
This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(2 \sqrt{3} \left(2 s_{0} + s_{1} - 1\right))\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
\(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{1}\).
\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 2 \sqrt{3} \left(x + 2 y + z - 1\right)\\\displaystyle - 2 \sqrt{3} y\\\displaystyle 0\end{array}\right)\)
This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(\sqrt{2})\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
and \(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2.
\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle \sqrt{2} x\\\displaystyle \sqrt{2} \left(y - 1\right)\\\displaystyle \sqrt{2} z\end{array}\right)\)
This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(6 s_{1} - 2)\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
\(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{2}\).
\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle - 2 x\\\displaystyle - 2 y - 6 z + 2\\\displaystyle 4 z\end{array}\right)\)
This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(2 \sqrt{3} \left(2 s_{0} + s_{1} - 1\right))\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
\(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{2}\).
\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 2 \sqrt{3} x\\\displaystyle 2 \sqrt{3} \left(- 2 x - y - z + 1\right)\\\displaystyle 0\end{array}\right)\)
This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(\sqrt{2})\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
and \(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3.
\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle - \sqrt{2} x\\\displaystyle - \sqrt{2} y\\\displaystyle \sqrt{2} \left(1 - z\right)\end{array}\right)\)
This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(6 s_{1} - 2)\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
\(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{3}\).
\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 2 x\\\displaystyle - 4 y\\\displaystyle 6 y + 2 z - 2\end{array}\right)\)
This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(2 \sqrt{3} \left(2 s_{0} + s_{1} - 1\right))\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
\(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(f_{3}\).
\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle - 2 \sqrt{3} x\\\displaystyle 0\\\displaystyle 2 \sqrt{3} \left(2 x + y + z - 1\right)\end{array}\right)\)
This DOF is associated with face 3 of the reference element.