an encyclopedia of finite element definitions

Tiniest tensor H(div)

Click here to read what the information on this page means.

Alternative namesTNT H(div)
De Rham complex families\(\left[S_{3,k}^\square\right]_{d-1}\)
Degrees\(1\leqslant k\)
where \(k\) is the Polynomial subdegree
Polynomial subdegree\(k\)
Polynomial superdegree\(dk+1\)
Lagrange subdegree\(k\)
Lagrange superdegree\(k+1\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{Q}_{k}^d \oplus \mathcal{Z}^{(38)}_{k}\) (quadrilateral)
\(\mathcal{Q}_{k}^d \oplus \mathcal{Z}^{(39)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k\) Lagrange space
On the interior of the reference element: integral moments with \(\nabla f\) for each \(f\) in a degree \(k\) Lagrange space, and integral moments with \(\nabla\times\boldsymbol{f}\) for each \(\boldsymbol{f}\) in a degree \(k\) vector Lagrange space such that the tangential trace of \(\boldsymbol{f}\) on the facets of the cell is 0
Number of DOFsquadrilateral: \(2(k+1)^2 + 3\)
hexahedron: \(3(k+1)^3 + 7\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
quadrilateral
degree 3

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)

References

DefElement stats

Element added24 October 2021
Element last updated27 September 2024