an encyclopedia of finite element definitions

Trimmed serendipity H(div)

Click here to read what the information on this page means.

De Rham complex families\(\left[S_{2,k}^\square\right]_{d-1}\) or \(\mathcal{S}^-_{k}\Lambda^{d-1}(\square_d)\)
Degrees\(1\leqslant k\)
where \(k\) is the Lagrange superdegree
Polynomial subdegree\(k-1\)
Polynomial superdegree\(k\)
Lagrange subdegree\(\operatorname{floor}((k+1)/(d+1))\)
Lagrange superdegree\(k\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(47)}_{k} \oplus \mathcal{Z}^{(48)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(47)}_{k} \oplus \mathcal{Z}^{(49)}_{k} \oplus \mathcal{Z}^{(50)}_{k} \oplus \mathcal{Z}^{(51)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each facet: normal integral moments with an degree \(k-1\) dPc space
On the interior of the reference element: integral moments with an degree \(k-3\) vector dPc space, and integral moments with \(\left\{\nabla(p)\middle|p\text{ is a degree \(k-1\) monomial}\right\}\)
Mappingcontravariant Piola
continuityComponents normal to facets are continuous
CategoriesVector-valued elements, H(div) conforming elements

Implementations

This element is implemented in FIAT and Symfem .↓ Show implementation detail ↓

Examples

quadrilateral
degree 1

(click to view basis functions)
quadrilateral
degree 2

(click to view basis functions)
quadrilateral
degree 3

(click to view basis functions)
hexahedron
degree 1

(click to view basis functions)
hexahedron
degree 2

(click to view basis functions)
hexahedron
degree 3

(click to view basis functions)

References

DefElement stats

Element added07 October 2021
Element last updated16 October 2024