an encyclopedia of finite element definitions
You can find some information about how these familes are defined here
Name(s) | \(H^1\) | \(\xrightarrow{\nabla}\) | \(H(\textbf{curl})\) | \(\xrightarrow{\nabla\times}\) | \(H(\text{div})\) | \(\xrightarrow{\nabla\cdot}\) | \(L^2\) |
\(S_{1,k}^\unicode{0x25FA}\), \(\mathcal{P}_{k}\Lambda^{r}(\Delta_3)\) | Lagrange | Nédélec (second kind) | Brezzi–Douglas–Marini | Lagrange | |||
\(S_{4,k}^\square\), \(\mathcal{Q}^-_{k}\Lambda^{r}(\square_3)\) | Lagrange | Nédélec (first kind) | Raviart–Thomas | Lagrange | |||
\(S_{1,k}^\square\), \(\mathcal{S}_{k}\Lambda^{r}(\square_3)\) | serendipity | serendipity H(curl) | serendipity H(div) | dPc | |||
\(S_{2,k}^\square\), \(\mathcal{S}^-_{k}\Lambda^{r}(\square_3)\) | serendipity | trimmed serendipity H(curl) | trimmed serendipity H(div) | dPc | |||
\(S_{3,k}^\square\) | Tiniest tensor | Tiniest tensor H(curl) | Tiniest tensor H(div) | Lagrange |