an encyclopedia of finite element definitions

Complex families

You can find some information about how these familes are defined here

De Rham complex in 3D

Name(s)\(H^1\)\(\xrightarrow{\nabla}\)\(H(\textbf{curl})\)\(\xrightarrow{\nabla\times}\)\(H(\text{div})\)\(\xrightarrow{\nabla\cdot}\)\(L^2\)
\(S_{1,k}^\unicode{0x25FA}\), \(\mathcal{P}_{k}\Lambda^{r}(\Delta_3)\)Lagrange Nédélec (second kind) Brezzi–Douglas–Marini Lagrange
\(S_{4,k}^\square\), \(\mathcal{Q}^-_{k}\Lambda^{r}(\square_3)\)Lagrange Nédélec (first kind) Raviart–Thomas Lagrange
\(S_{1,k}^\square\), \(\mathcal{S}_{k}\Lambda^{r}(\square_3)\)serendipity serendipity H(curl) serendipity H(div) dPc
\(S_{2,k}^\square\), \(\mathcal{S}^-_{k}\Lambda^{r}(\square_3)\)serendipity trimmed serendipity H(curl) trimmed serendipity H(div) dPc
\(S_{3,k}^\square\)Tiniest tensor Tiniest tensor H(curl) Tiniest tensor H(div) Lagrange

De Rham complex in 2D

Name(s)\(H^1\)\(\xrightarrow{\textbf{curl}}\)\(H(\text{div})\)\(\xrightarrow{\nabla\cdot}\)\(L_2\)
\(S_{1,k}^\unicode{0x25FA}\), \(\mathcal{P}_{k}\Lambda^{r}(\Delta_2)\)Lagrange Brezzi–Douglas–Marini Lagrange
\(S_{4,k}^\square\), \(\mathcal{Q}^-_{k}\Lambda^{r}(\square_2)\)Lagrange Raviart–Thomas Lagrange
\(S_{1,k}^\square\), \(\mathcal{S}_{k}\Lambda^{r}(\square_2)\)serendipity serendipity H(div) dPc
\(S_{2,k}^\square\), \(\mathcal{S}^-_{k}\Lambda^{r}(\square_2)\)serendipity trimmed serendipity H(div) dPc
\(S_{3,k}^\square\)Tiniest tensor Tiniest tensor H(div) Lagrange
\(\mathrm{C}\mathrm{P}^{3-r}\mathrm{\Lambda}^r(\mathcal{R})\)Hsieh–Clough–Tocher Alfeld–Sorokina P1 macro