FIAT verification122 / 131
Last updated: 16 October 2025The plot above shows the number of elements passing verificiation (green line) out of the number of elements being verified (dashed black line) over time.
| Element | Example |  | 
| Alfeld–Sorokina | triangle,2 |  | 
| Argyris | triangle,5 |  | 
| Arnold–Winther | triangle,2 |  | 
| Bell | triangle,4 |  | 
| Bernardi–Raugel | triangle,1 |  | 
| tetrahedron,1 |  | 
| tetrahedron,2 |  | 
| Bernstein | interval,1 |  | 
| interval,2 |  | 
| interval,3 |  | 
| triangle,1 |  | 
| triangle,2 |  | 
| triangle,3 |  | 
| Brezzi–Douglas–Marini | triangle,1,legendre |  | 
| triangle,2,legendre |  | 
| tetrahedron,1,legendre |  | 
| tetrahedron,2,legendre |  | 
| bubble | interval,2 |  | 
| interval,3 |  | 
| triangle,3 |  | 
| triangle,4 |  | 
| Crouzeix–Raviart | triangle,1 |  | 
| tetrahedron,1 |  | 
| discontinuous Lagrange | interval,0,equispaced |  | 
| interval,1,equispaced |  | 
| interval,2,equispaced |  | 
| triangle,0,equispaced |  | 
| triangle,1,equispaced |  | 
| triangle,2,equispaced |  | 
| tetrahedron,0,equispaced |  | 
| tetrahedron,1,equispaced |  | 
| tetrahedron,2,equispaced |  | 
| dPc | interval,1 |  | 
| interval,2 |  | 
| interval,3 |  | 
| quadrilateral,1 |  | 
| quadrilateral,2 |  | 
| quadrilateral,3 |  | 
| Gopalakrishnan–Lederer–Schöberl | triangle,0 |  | 
| triangle,1 |  | 
| triangle,2 |  | 
| tetrahedron,0 |  | 
| tetrahedron,1 |  | 
| Guzmán–Neilan (first kind) | triangle,1 |  | 
| tetrahedron,1 |  | 
| tetrahedron,2 |  | 
| Guzmán–Neilan (second kind) | triangle,1 |  | 
| tetrahedron,1 |  | 
| tetrahedron,2 |  | 
| Hellan–Herrmann–Johnson | triangle,0 |  | 
| triangle,1 |  | 
| triangle,2 |  | 
| tetrahedron,0 |  | 
| tetrahedron,1 |  | 
| tetrahedron,2 |  | 
| Hermite | interval,3 |  | 
| triangle,3 |  | 
| tetrahedron,3 |  | 
| Hsieh–Clough–Tocher | triangle,3 |  | 
| Kong–Mulder–Veldhuizen | triangle,1 |  | 
| triangle,2 |  | 
| tetrahedron,1 |  | 
| Lagrange | interval,1,equispaced |  | 
| interval,2,equispaced |  | 
| interval,3,equispaced |  | 
| interval,1,gll |  | 
| interval,2,gll |  | 
| interval,3,gll |  | 
| interval,4,gll |  | 
| interval,1,lobatto |  | 
| interval,2,lobatto |  | 
| interval,3,lobatto |  | 
| triangle,1,equispaced |  | 
| triangle,2,equispaced |  | 
| triangle,3,equispaced |  | 
| tetrahedron,1,equispaced |  | 
| tetrahedron,2,equispaced |  | 
| Mardal–Tai–Winther | triangle,1 |  | 
| Morley | triangle,2 |  | 
| Nédélec (first kind) | triangle,0,lagrange |  | 
| triangle,1,lagrange |  | 
| triangle,0,legendre |  | 
| triangle,1,legendre |  | 
| tetrahedron,0,lagrange |  | 
| tetrahedron,1,lagrange |  | 
| Nédélec (second kind) | triangle,1,lagrange |  | 
| triangle,2,lagrange |  | 
| triangle,1,legendre |  | 
| triangle,2,legendre |  | 
| tetrahedron,1,lagrange |  | 
| tetrahedron,2,lagrange |  | 
| tetrahedron,1,legendre |  | 
| tetrahedron,2,legendre |  | 
| nonconforming Arnold–Winther | triangle,1 |  | 
| P1-iso-P2 | interval,1 |  | 
| triangle,1 |  | 
| Raviart–Thomas | triangle,0,lagrange |  | 
| triangle,1,lagrange |  | 
| triangle,0,legendre |  | 
| triangle,1,legendre |  | 
| tetrahedron,0,lagrange |  | 
| tetrahedron,1,lagrange |  | 
| tetrahedron,0,legendre |  | 
| tetrahedron,1,legendre |  | 
| reduced Hsieh–Clough–Tocher | triangle,3 |  | 
| Regge | triangle,1 |  | 
| triangle,2 |  | 
| serendipity | interval,1 |  | 
| interval,2 |  | 
| interval,3 |  | 
| quadrilateral,1 |  | 
| quadrilateral,2 |  | 
| quadrilateral,3 |  | 
| Taylor | interval,1 |  | 
| interval,2 |  | 
| interval,3 |  | 
| triangle,1 |  | 
| triangle,2 |  | 
| triangle,3 |  | 
| trimmed serendipity H(curl) | quadrilateral,0 |  | 
| quadrilateral,1 |  | 
| quadrilateral,2 |  | 
| hexahedron,0 |  | 
| hexahedron,1 |  | 
| hexahedron,2 |  | 
| trimmed serendipity H(div) | quadrilateral,0 |  | 
| quadrilateral,1 |  | 
| quadrilateral,2 |  | 
| hexahedron,0 |  | 
| hexahedron,1 |  | 
| hexahedron,2 |  | 
For each element in the table above, the verification test passes for an example if:
- The element's basis functions span the same space as Symfem.
- The number of DOFs associated with each sub-entity of the cell is the same as Symfem.
- The element has the same continuity between cells as Symfem.
The symbols in the table have the following meaning:
|  | Verification passes | 
|  | Verification fails | 
You can information about verification of other libraries on the 
verification page.
| Badge | Markdown | 
|  | [](https://defelement.org/verification/fiat.html) |