FIAT verification100 / 109
Last updated: 16 May 2025The plot above shows the number of elements passing verificiation (green line) out of the number of elements being verified (dashed black line) over time.
Element | Example | |
Alfeld–Sorokina | triangle,2 | |
Argyris | triangle,5 | |
Arnold–Winther | triangle,2 | |
Bell | triangle,4 | |
Bernardi–Raugel | triangle,1 | |
tetrahedron,1 | |
tetrahedron,2 | |
Bernstein | interval,1 | |
interval,2 | |
interval,3 | |
triangle,1 | |
triangle,2 | |
triangle,3 | |
Brezzi–Douglas–Marini | triangle,1,legendre | |
triangle,2,legendre | |
tetrahedron,1,legendre | |
tetrahedron,2,legendre | |
bubble | interval,2 | |
interval,3 | |
triangle,3 | |
triangle,4 | |
Crouzeix–Raviart | triangle,1 | |
discontinuous Lagrange | interval,0,equispaced | |
interval,1,equispaced | |
interval,2,equispaced | |
triangle,0,equispaced | |
triangle,1,equispaced | |
triangle,2,equispaced | |
tetrahedron,0,equispaced | |
tetrahedron,1,equispaced | |
tetrahedron,2,equispaced | |
dPc | interval,1 | |
interval,2 | |
interval,3 | |
quadrilateral,1 | |
quadrilateral,2 | |
quadrilateral,3 | |
Gopalakrishnan–Lederer–Schöberl | triangle,0 | |
triangle,1 | |
triangle,2 | |
tetrahedron,0 | |
tetrahedron,1 | |
Guzmán–Neilan (first kind) | triangle,1 | |
tetrahedron,1 | |
tetrahedron,2 | |
Guzmán–Neilan (second kind) | triangle,1 | |
tetrahedron,1 | |
tetrahedron,2 | |
Hellan–Herrmann–Johnson | triangle,1 | |
triangle,2 | |
tetrahedron,1 | |
tetrahedron,2 | |
Hermite | interval,3 | |
triangle,3 | |
tetrahedron,3 | |
Hsieh–Clough–Tocher | triangle,3 | |
Kong–Mulder–Veldhuizen | triangle,1 | |
triangle,2 | |
tetrahedron,1 | |
Lagrange | interval,1,equispaced | |
interval,2,equispaced | |
interval,3,equispaced | |
triangle,1,equispaced | |
triangle,2,equispaced | |
triangle,3,equispaced | |
tetrahedron,1,equispaced | |
tetrahedron,2,equispaced | |
Mardal–Tai–Winther | triangle,1 | |
Morley | triangle,2 | |
Nédélec (first kind) | triangle,0,legendre | |
triangle,1,legendre | |
Nédélec (second kind) | triangle,1,legendre | |
triangle,2,legendre | |
tetrahedron,1,legendre | |
tetrahedron,2,legendre | |
nonconforming Arnold–Winther | triangle,1 | |
P1-iso-P2 | interval,1 | |
triangle,1 | |
Raviart–Thomas | triangle,0,legendre | |
triangle,1,legendre | |
tetrahedron,0,legendre | |
tetrahedron,1,legendre | |
reduced Hsieh–Clough–Tocher | triangle,3 | |
Regge | triangle,1 | |
triangle,2 | |
serendipity | interval,1 | |
interval,2 | |
interval,3 | |
quadrilateral,1 | |
quadrilateral,2 | |
quadrilateral,3 | |
Taylor | interval,1 | |
interval,2 | |
interval,3 | |
triangle,1 | |
triangle,2 | |
triangle,3 | |
trimmed serendipity H(curl) | quadrilateral,0 | |
quadrilateral,1 | |
quadrilateral,2 | |
hexahedron,0 | |
hexahedron,1 | |
hexahedron,2 | |
trimmed serendipity H(div) | quadrilateral,0 | |
quadrilateral,1 | |
quadrilateral,2 | |
hexahedron,0 | |
hexahedron,1 | |
hexahedron,2 | |
For each element in the table above, the verification test passes for an example if:
- The element's basis functions span the same space as Symfem.
- The number of DOFs associated with each sub-entity of the cell is the same as Symfem.
- The element has the same continuity between cells as Symfem.
The symbols in the table have the following meaning:
| Verification passes |
| Verification fails |
You can information about verification of other libraries on the
verification page.
Badge | Markdown |
 | [](https://defelement.org/verification/fiat.html) |