an encyclopedia of finite element definitions
| Element | Example | |
| Arnold–Winther | triangle,2 | |
| triangle,3 | ||
| Bernstein | interval,1 | |
| interval,2 | ||
| interval,3 | ||
| triangle,1 | ||
| triangle,2 | ||
| triangle,3 | ||
| Brezzi–Douglas–Durán–Fortin | hexahedron,1 | |
| hexahedron,2 | ||
| Brezzi–Douglas–Fortin–Marini | triangle,0 | |
| triangle,1 | ||
| quadrilateral,0 | ||
| quadrilateral,1 | ||
| tetrahedron,0 | ||
| tetrahedron,1 | ||
| hexahedron,0 | ||
| hexahedron,1 | ||
| Brezzi–Douglas–Marini | triangle,1,lagrange | |
| triangle,2,lagrange | ||
| triangle,1,legendre | ||
| triangle,2,legendre | ||
| tetrahedron,1,lagrange | ||
| tetrahedron,2,lagrange | ||
| tetrahedron,1,legendre | ||
| tetrahedron,2,legendre | ||
| bubble | interval,2 | |
| interval,3 | ||
| triangle,3 | ||
| triangle,4 | ||
| bubble enriched Lagrange | triangle,1 | |
| triangle,2 | ||
| conforming Crouzeix–Raviart | triangle,1 | |
| triangle,2 | ||
| triangle,3 | ||
| triangle,4 | ||
| triangle,5 | ||
| Crouzeix–Falk | triangle,3 | |
| Crouzeix–Raviart | triangle,1 | |
| quadrilateral,1 | ||
| tetrahedron,1 | ||
| hexahedron,1 | ||
| discontinuous Lagrange | interval,0,equispaced | |
| interval,1,equispaced | ||
| interval,2,equispaced | ||
| triangle,0,equispaced | ||
| triangle,1,equispaced | ||
| triangle,2,equispaced | ||
| quadrilateral,0,equispaced | ||
| quadrilateral,1,equispaced | ||
| quadrilateral,2,equispaced | ||
| tetrahedron,0,equispaced | ||
| tetrahedron,1,equispaced | ||
| tetrahedron,2,equispaced | ||
| hexahedron,0,equispaced | ||
| hexahedron,1,equispaced | ||
| hexahedron,2,equispaced | ||
| prism,0,equispaced | ||
| prism,1,equispaced | ||
| prism,2,equispaced | ||
| dPc | quadrilateral,1 | |
| quadrilateral,2 | ||
| quadrilateral,3 | ||
| Gauss–Legendre | interval,1 | |
| interval,2 | ||
| quadrilateral,1 | ||
| quadrilateral,2 | ||
| Hellan–Herrmann–Johnson | triangle,0 | |
| triangle,1 | ||
| triangle,2 | ||
| tetrahedron,0 | ||
| tetrahedron,1 | ||
| tetrahedron,2 | ||
| Huang–Zhang | quadrilateral,1 | |
| quadrilateral,2 | ||
| Kong–Mulder–Veldhuizen | triangle,1 | |
| triangle,2 | ||
| tetrahedron,1 | ||
| Lagrange | interval,1,equispaced | |
| interval,2,equispaced | ||
| interval,3,equispaced | ||
| interval,1,gll | ||
| interval,2,gll | ||
| interval,3,gll | ||
| interval,4,gll | ||
| triangle,1,equispaced | ||
| triangle,2,equispaced | ||
| triangle,3,equispaced | ||
| quadrilateral,1,equispaced | ||
| quadrilateral,2,equispaced | ||
| quadrilateral,3,equispaced | ||
| quadrilateral,1,gll | ||
| quadrilateral,2,gll | ||
| tetrahedron,1,equispaced | ||
| tetrahedron,2,equispaced | ||
| hexahedron,1,equispaced | ||
| hexahedron,2,equispaced | ||
| prism,1,equispaced | ||
| prism,2,equispaced | ||
| pyramid,1,equispaced | ||
| pyramid,2,equispaced | ||
| Mardal–Tai–Winther | triangle,1 | |
| tetrahedron,1 | ||
| Nédélec (first kind) | triangle,0,lagrange | |
| triangle,1,lagrange | ||
| triangle,0,legendre | ||
| triangle,1,legendre | ||
| quadrilateral,0,lagrange | ||
| quadrilateral,1,lagrange | ||
| quadrilateral,0,legendre | ||
| quadrilateral,1,legendre | ||
| tetrahedron,0,lagrange | ||
| tetrahedron,1,lagrange | ||
| hexahedron,0,lagrange | ||
| hexahedron,1,lagrange | ||
| Nédélec (second kind) | triangle,1,lagrange | |
| triangle,2,lagrange | ||
| triangle,1,legendre | ||
| triangle,2,legendre | ||
| tetrahedron,1,lagrange | ||
| tetrahedron,2,lagrange | ||
| tetrahedron,1,legendre | ||
| tetrahedron,2,legendre | ||
| nonconforming Arnold–Winther | triangle,1 | |
| P1-iso-P2 | interval,1 | |
| triangle,1 | ||
| quadrilateral,1 | ||
| Radau | interval,1 | |
| interval,2 | ||
| quadrilateral,1 | ||
| quadrilateral,2 | ||
| Raviart–Thomas | triangle,0,lagrange | |
| triangle,1,lagrange | ||
| triangle,0,legendre | ||
| triangle,1,legendre | ||
| quadrilateral,0,lagrange | ||
| quadrilateral,1,lagrange | ||
| quadrilateral,0,legendre | ||
| quadrilateral,1,legendre | ||
| tetrahedron,0,lagrange | ||
| tetrahedron,1,lagrange | ||
| tetrahedron,0,legendre | ||
| tetrahedron,1,legendre | ||
| hexahedron,0,lagrange | ||
| hexahedron,1,lagrange | ||
| hexahedron,0,legendre | ||
| hexahedron,1,legendre | ||
| Regge | triangle,1 | |
| triangle,2 | ||
| serendipity | interval,1 | |
| interval,2 | ||
| interval,3 | ||
| quadrilateral,1 | ||
| quadrilateral,2 | ||
| quadrilateral,3 | ||
| serendipity H(curl) | quadrilateral,1 | |
| quadrilateral,2 | ||
| hexahedron,1 | ||
| hexahedron,2 | ||
| serendipity H(div) | quadrilateral,1 | |
| quadrilateral,2 | ||
| hexahedron,1 | ||
| hexahedron,2 | ||
| Tiniest tensor | quadrilateral,2 | |
| quadrilateral,3 | ||
| quadrilateral,4 | ||
| hexahedron,2 | ||
| Tiniest tensor H(curl) | quadrilateral,1 | |
| quadrilateral,2 | ||
| quadrilateral,3 | ||
| hexahedron,1 | ||
| Tiniest tensor H(div) | quadrilateral,1 | |
| quadrilateral,2 | ||
| quadrilateral,3 | ||
| hexahedron,1 | ||
| trimmed serendipity H(curl) | quadrilateral,0 | |
| quadrilateral,1 | ||
| quadrilateral,2 | ||
| hexahedron,0 | ||
| hexahedron,1 | ||
| hexahedron,2 | ||
| trimmed serendipity H(div) | quadrilateral,0 | |
| quadrilateral,1 | ||
| quadrilateral,2 | ||
| hexahedron,0 | ||
| hexahedron,1 | ||
| hexahedron,2 | ||
| vector bubble enriched Lagrange | triangle,1 | |
| triangle,2 | ||
| vector dPc | quadrilateral,1 | |
| quadrilateral,2 | ||
| quadrilateral,3 | ||
| hexahedron,1 | ||
| hexahedron,2 | ||
| vector Lagrange | triangle,1 | |
| triangle,2 | ||
| tetrahedron,1 | ||
| tetrahedron,2 | ||
| vector Q | quadrilateral,1 | |
| quadrilateral,2 | ||
| hexahedron,1 | ||
| hexahedron,2 |
For each element in the table above, the verification test passes for an example if:
The algorithm used to perform verification is described in detail in the DefElement paper {{citation::defelement_paper}}.
The symbols in the table have the following meaning:
| Verification passes | |
| Verification fails |
You can information about verification of other libraries on the verification page.
| Badge | Markdown |
| [](https://defelement.org/verification/basix.ufl.html) |