Last updated: 16 November 2025| Element | Example | Basix | Basix.UFL | Basix.UFL | FIAT | NDElement |
| discontinuous Lagrange | interval,0,equispaced | | | | | |
| interval,1,equispaced | | | | | |
| interval,2,equispaced | | | | | |
| triangle,0,equispaced | | | | | |
| triangle,1,equispaced | | | | | |
| triangle,2,equispaced | | | | | |
| quadrilateral,0,equispaced | | | | | |
| quadrilateral,1,equispaced | | | | | |
| quadrilateral,2,equispaced | | | | | |
| tetrahedron,0,equispaced | | | | | |
| tetrahedron,1,equispaced | | | | | |
| tetrahedron,2,equispaced | | | | | |
| hexahedron,0,equispaced | | | | | |
| hexahedron,1,equispaced | | | | | |
| hexahedron,2,equispaced | | | | | |
| prism,0,equispaced | | | | | |
| prism,1,equispaced | | | | | |
| prism,2,equispaced | | | | | |
| pyramid,0,equispaced | | | | | |
| pyramid,1,equispaced | | | | | |
| pyramid,2,equispaced | | | | | |
| Lagrange | interval,1,equispaced | | | | | |
| interval,2,equispaced | | | | | |
| interval,3,equispaced | | | | | |
| interval,1,gll | | | | | |
| interval,2,gll | | | | | |
| interval,3,gll | | | | | |
| interval,4,gll | | | | | |
| interval,1,lobatto | | | | | |
| interval,2,lobatto | | | | | |
| interval,3,lobatto | | | | | |
| triangle,1,equispaced | | | | | |
| triangle,2,equispaced | | | | | |
| triangle,3,equispaced | | | | | |
| quadrilateral,1,equispaced | | | | | |
| quadrilateral,2,equispaced | | | | | |
| quadrilateral,3,equispaced | | | | | |
| quadrilateral,1,gll | | | | | |
| quadrilateral,2,gll | | | | | |
| quadrilateral,1,lobatto | | | | | |
| quadrilateral,2,lobatto | | | | | |
| quadrilateral,3,lobatto | | | | | |
| tetrahedron,1,equispaced | | | | | |
| tetrahedron,2,equispaced | | | | | |
| hexahedron,1,equispaced | | | | | |
| hexahedron,2,equispaced | | | | | |
| hexahedron,1,lobatto | | | | | |
| hexahedron,2,lobatto | | | | | |
| prism,1,equispaced | | | | | |
| prism,2,equispaced | | | | | |
| pyramid,1,equispaced | | | | | |
| pyramid,2,equispaced | | | | | |
| Nédélec (first kind) | triangle,0,lagrange | | | | | |
| triangle,1,lagrange | | | | | |
| triangle,0,legendre | | | | | |
| triangle,1,legendre | | | | | |
| quadrilateral,0,lagrange | | | | | |
| quadrilateral,1,lagrange | | | | | |
| quadrilateral,0,legendre | | | | | |
| quadrilateral,1,legendre | | | | | |
| tetrahedron,0,lagrange | | | | | |
| tetrahedron,1,lagrange | | | | | |
| hexahedron,0,lagrange | | | | | |
| hexahedron,1,lagrange | | | | | |
| prism,0,lagrange | | | | | |
| prism,1,lagrange | | | | | |
| Raviart–Thomas | triangle,0,lagrange | | | | | |
| triangle,1,lagrange | | | | | |
| triangle,0,legendre | | | | | |
| triangle,1,legendre | | | | | |
| quadrilateral,0,lagrange | | | | | |
| quadrilateral,1,lagrange | | | | | |
| quadrilateral,0,legendre | | | | | |
| quadrilateral,1,legendre | | | | | |
| tetrahedron,0,lagrange | | | | | |
| tetrahedron,1,lagrange | | | | | |
| tetrahedron,0,legendre | | | | | |
| tetrahedron,1,legendre | | | | | |
| hexahedron,0,lagrange | | | | | |
| hexahedron,1,lagrange | | | | | |
| hexahedron,0,legendre | | | | | |
| hexahedron,1,legendre | | | | | |
| Brezzi–Douglas–Marini | triangle,1,lagrange | | | | | |
| triangle,2,lagrange | | | | | |
| triangle,1,legendre | | | | | |
| triangle,2,legendre | | | | | |
| tetrahedron,1,lagrange | | | | | |
| tetrahedron,2,lagrange | | | | | |
| tetrahedron,1,legendre | | | | | |
| tetrahedron,2,legendre | | | | | |
| bubble | interval,2 | | | | | |
| interval,3 | | | | | |
| triangle,3 | | | | | |
| triangle,4 | | | | | |
| Crouzeix–Raviart | triangle,1 | | | | | |
| quadrilateral,1 | | | | | |
| tetrahedron,1 | | | | | |
| hexahedron,1 | | | | | |
| dPc | interval,1 | | | | | |
| interval,2 | | | | | |
| interval,3 | | | | | |
| quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| quadrilateral,3 | | | | | |
| Hellan–Herrmann–Johnson | triangle,0 | | | | | |
| triangle,1 | | | | | |
| triangle,2 | | | | | |
| tetrahedron,0 | | | | | |
| tetrahedron,1 | | | | | |
| tetrahedron,2 | | | | | |
| Nédélec (second kind) | triangle,1,lagrange | | | | | |
| triangle,2,lagrange | | | | | |
| triangle,1,legendre | | | | | |
| triangle,2,legendre | | | | | |
| tetrahedron,1,lagrange | | | | | |
| tetrahedron,2,lagrange | | | | | |
| tetrahedron,1,legendre | | | | | |
| tetrahedron,2,legendre | | | | | |
| P1-iso-P2 | interval,1 | | | | | |
| triangle,1 | | | | | |
| quadrilateral,1 | | | | | |
| Regge | triangle,1 | | | | | |
| triangle,2 | | | | | |
| serendipity | interval,1 | | | | | |
| interval,2 | | | | | |
| interval,3 | | | | | |
| quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| quadrilateral,3 | | | | | |
| Hermite | interval,3 | | | | | |
| triangle,3 | | | | | |
| tetrahedron,3 | | | | | |
| Alfeld–Sorokina | triangle,2 | | | | | |
| Argyris | triangle,5 | | | | | |
| Arnold–Winther | triangle,2 | | | | | |
| triangle,3 | | | | | |
| Bell | triangle,4 | | | | | |
| Bernardi–Raugel | triangle,1 | | | | | |
| tetrahedron,1 | | | | | |
| tetrahedron,2 | | | | | |
| Bernstein | interval,1 | | | | | |
| interval,2 | | | | | |
| interval,3 | | | | | |
| triangle,1 | | | | | |
| triangle,2 | | | | | |
| triangle,3 | | | | | |
| Gopalakrishnan–Lederer–Schöberl | triangle,0 | | | | | |
| triangle,1 | | | | | |
| triangle,2 | | | | | |
| tetrahedron,0 | | | | | |
| tetrahedron,1 | | | | | |
| Guzmán–Neilan (first kind) | triangle,1 | | | | | |
| tetrahedron,1 | | | | | |
| tetrahedron,2 | | | | | |
| Guzmán–Neilan (second kind) | triangle,1 | | | | | |
| tetrahedron,1 | | | | | |
| tetrahedron,2 | | | | | |
| Hsieh–Clough–Tocher | triangle,3 | | | | | |
| Kong–Mulder–Veldhuizen | triangle,1 | | | | | |
| triangle,2 | | | | | |
| tetrahedron,1 | | | | | |
| Mardal–Tai–Winther | triangle,1 | | | | | |
| tetrahedron,1 | | | | | |
| Morley | triangle,2 | | | | | |
| nonconforming Arnold–Winther | triangle,1 | | | | | |
| reduced Hsieh–Clough–Tocher | triangle,3 | | | | | |
| Taylor | interval,1 | | | | | |
| interval,2 | | | | | |
| interval,3 | | | | | |
| triangle,1 | | | | | |
| triangle,2 | | | | | |
| triangle,3 | | | | | |
| trimmed serendipity H(curl) | quadrilateral,0 | | | | | |
| quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| hexahedron,0 | | | | | |
| hexahedron,1 | | | | | |
| hexahedron,2 | | | | | |
| trimmed serendipity H(div) | quadrilateral,0 | | | | | |
| quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| hexahedron,0 | | | | | |
| hexahedron,1 | | | | | |
| hexahedron,2 | | | | | |
| vector dPc | quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| quadrilateral,3 | | | | | |
| hexahedron,1 | | | | | |
| hexahedron,2 | | | | | |
| vector Lagrange | triangle,1 | | | | | |
| triangle,2 | | | | | |
| tetrahedron,1 | | | | | |
| tetrahedron,2 | | | | | |
| vector Q | quadrilateral,1 | | | | | |
| quadrilateral,2 | | | | | |
| hexahedron,1 | | | | | |
| hexahedron,2 | | | | | |
For each element in the table above, the verification test passes for an example if:
- The element's basis functions span the same space as Symfem.
- The number of DOFs associated with each sub-entity of the cell is the same as Symfem.
- The element has the same continuity between cells as Symfem.
The symbols in the table have the following meaning:
| Verification passes |
| Verification fails |
| Example not implemented |
You can view a summarised version of this information on the
verification page.
The verification data is also available
in JSON format.
| Implementation | Badge | Markdown |
| Basix |  | [](https://defelement.org/verification/basix.html) |
| Basix.UFL |  | [](https://defelement.org/verification/basix.ufl.html) |
| Basix.UFL | .svg) | [.svg)](https://defelement.org/verification/*(symfem -> basix.ufl).html) |
| FIAT |  | [](https://defelement.org/verification/fiat.html) |
| Symfem |  | [](https://defelement.org/verification/) |
| NDElement |  | [](https://defelement.org/verification/ndelement.html) |